organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Hydroxy-5-methylphenyl)-3-(2methylphenyl)prop-2-en-1-one

D. Vijay Kumar,^a G. B. Thippeswamy,^b B. S. Jayashree^a and M. A. Sridhar^{b*}

^aDepartment of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal 576 104, India, and ^bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India Correspondence e-mail: mas@physics.uni-mysore.ac.in

Received 1 May 2011; accepted 15 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.073; wR factor = 0.209; data-to-parameter ratio = 13.8.

In the title compound, $C_{17}H_{16}O_2$, the dihedral angle between the aromatic rings is 5.12 $(13)^{\circ}$ and an intramolecular O- $H \cdots O$ hydrogen bond generates an S(6) ring.

Related literature

For a related structure and background references to chalcones, see: Thippeswamy et al. (2011).

Experimental

Crystal data C17H16O2 $M_r = 252.30$

Orthorhombic, Pbca a = 13.3930 (11) Å

b = 14.1740 (16) Å c = 14.5710 (15) Å V = 2766.0 (5) Å³ Z = 8

Data collection

2422 independent reflections 1654 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$
175 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.29 \times 0.27 \times 0.25 \text{ mm}$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O18−H18···O11	0.82	1.89	2.608 (3)	146

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2009).

The authors are grateful to the DST/CSIR, New Delhi, and the University of Mysore for financial support and duly acknowledge Manipal College of Pharmaceutical Sciences for providing facilities to carry out the synthetic work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5868).

References

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thippeswamy, G. B., Vijay Kumar, D., Jayashree, B. S., Sridhar, M. A. & Shashidhara Prasad, J. (2011). Acta Cryst. E67, 0829.

supplementary materials

Acta Cryst. (2011). E67, o1492 [doi:10.1107/S1600536811018381]

1-(2-Hydroxy-5-methylphenyl)-3-(2-methylphenyl)prop-2-en-1-one

D. Vijay Kumar, G. B. Thippeswamy, B. S. Jayashree and M. A. Sridhar

Comment

As part of our ongoing structural studies of chalcones (Thippeswamy *et al.*, 2011), we now report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The title compound, $C_{17}H_{16}O_2$, consists of two methylphenyl rings attached at ei-ther sides of the propanone chain. The propanone unit is planar, which is confirmed by the r.m.s. deviation of 0.003 (3)Å from the mean plane. The dihedral angle between the least squares planes of 5-methylphenyl ring and 2-methylphenyl ring is 5.93 (13)° which indicates that 5-methylphenyl ring in +Syn-periplanar conformation with 2-methylphenyl ring. The bond lengths C1—O11, C1—C12, C1—C2, C2—C3, C3—C4 and bond angles C1—C2—C12,C1—C2—C3 are in good agreement with these of a similar compound reported earlier (Thippeswamy *et al.*, 2011). The angles C2—C1—O11, C12—C1—O11 and C2—C1—C12 are 119.5 (2)°, 119.4 (2)° and 121.1 (2)° respectively which indicate that the position of C1 atom is nearly in trigonal geometry. An intramolecular O—H…O hydrogen bond occurs (Table 1).

Experimental

The title compound was prepared by dissolving 2-hydroxy-5- methoxyacetophenone 0.05 m mol in 15 ml of ethanol taken in a conical flask. To this 5 ml of 20° aqueous sodium hydroxide was added and kept for stirring at room temperature. To this mixture, 4-methylbenzaldehyde 0.05 m mol was added and continued stirring till the completion of reaction. The progress of the reaction was monitored by TLC using n-hexane and ethylacetate as solvent system. After completion of the reaction, the mixture was poured into ice cold water, mixed properly and acidified with dilute hydrochloric acid. The title compound separates as precipitate which was collected by filtration and crystallized from methanol as orange blocks of (I).

Figures

Fig. 1. Molecular structure of (I) with 50% probability displacement ellipsoids.

Fig. 2. Packing diagram for (I).

1-(2-Hydroxy-5-methylphenyl)-3-(2-methylphenyl)prop-2-en-1-one

Crystal data

$C_{17}H_{16}O_2$	F(000) = 1072
$M_r = 252.30$	$D_{\rm x} = 1.212 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 8036 reflections
a = 13.3930 (11) Å	$\theta = 2.4 - 25.0^{\circ}$
b = 14.1740 (16) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 14.5710 (15) Å	T = 293 K
$V = 2766.0 (5) \text{ Å}^3$	Block, orange
Z = 8	$0.29 \times 0.27 \times 0.25 \text{ mm}$

Data collection

MacScience DIPLabo 32001 diffractometer	1654 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Detector resolution: 10.0 pixels mm ⁻¹	$h = -15 \rightarrow 15$
ω scans	$k = -15 \rightarrow 16$
8036 measured reflections	$l = -17 \rightarrow 17$
2422 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained
$wR(F^2) = 0.209$	$w = 1/[\sigma^2(F_o^2) + (0.1131P)^2 + 0.2932P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} = 0.009$
2422 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
175 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.025 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.93869 (16)	0.33849 (16)	0.36305 (17)	0.0641 (7)
C2	0.91789 (15)	0.39731 (16)	0.44755 (17)	0.0667 (7)
H2	0.9447	0.3787	0.5036	0.080*
C3	0.86192 (16)	0.47546 (16)	0.44390 (17)	0.0657 (7)
Н3	0.8382	0.4919	0.3861	0.079*
C4	0.83271 (15)	0.53964 (17)	0.52070 (17)	0.0686 (7)
C5	0.8504 (2)	0.5140 (2)	0.6137 (2)	0.0882 (9)
Н5	0.8804	0.4563	0.6266	0.106*
C6	0.8230 (3)	0.5747 (3)	0.6874 (2)	0.1102 (11)
H6	0.8356	0.5570	0.7477	0.132*
C7	0.7767 (3)	0.6617 (3)	0.6682 (3)	0.1179 (14)
H7	0.7587	0.7019	0.7159	0.141*
C8	0.7581 (2)	0.6874 (2)	0.5779 (3)	0.1063 (12)
H8	0.7271	0.7449	0.5665	0.128*
C9	0.78464 (17)	0.62923 (19)	0.5019 (2)	0.0812 (8)
C10	0.7635 (2)	0.6625 (2)	0.4032 (3)	0.1076 (11)
H10A	0.7293	0.7220	0.4048	0.161*
H10B	0.7225	0.6167	0.3725	0.161*
H10C	0.8254	0.6695	0.3707	0.161*
011	0.91143 (13)	0.36828 (12)	0.28533 (12)	0.0830 (6)
C12	0.98967 (15)	0.24407 (16)	0.37022 (17)	0.0626 (6)
C13	1.02359 (15)	0.20750 (17)	0.45520 (17)	0.0673 (7)
H13	1.0135	0.2428	0.5082	0.081*
C14	1.07221 (17)	0.11945 (19)	0.4623 (2)	0.0772 (8)
C15	1.0858 (2)	0.0661 (2)	0.3793 (2)	0.0908 (9)
H15	1.1180	0.0081	0.3825	0.109*
C16	1.0530 (2)	0.0979 (2)	0.2950 (2)	0.0924 (9)
H16	1.0623	0.0611	0.2429	0.111*
C17	1.00483 (19)	0.18723 (18)	0.2883 (2)	0.0749 (7)
O18	0.97406 (16)	0.21620 (15)	0.20261 (13)	0.1000(7)
H18	0.9475	0.2682	0.2066	0.150*
C19	1.1099 (2)	0.0842 (2)	0.5547 (2)	0.0995 (10)
H19A	1.1807	0.0944	0.5588	0.149*
H19B	1.0960	0.0181	0.5605	0.149*
H19C	1.0770	0.1180	0.6031	0.149*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0505 (11)	0.0700 (14)	0.0717 (16)	-0.0065 (10)	-0.0030 (10)	-0.0002 (12)
C2	0.0521 (12)	0.0733 (14)	0.0748 (17)	0.0036 (11)	-0.0079 (11)	-0.0016 (12)
C3	0.0485 (11)	0.0733 (14)	0.0754 (16)	-0.0053 (11)	0.0020 (10)	0.0045 (12)
C4	0.0436 (11)	0.0783 (15)	0.0837 (19)	-0.0045 (11)	0.0050 (11)	-0.0046 (12)
C5	0.0648 (15)	0.109 (2)	0.091 (2)	-0.0065 (14)	0.0051 (14)	-0.0096 (17)
C6	0.0821 (19)	0.159 (3)	0.089 (2)	-0.025 (2)	0.0116 (17)	-0.026 (2)
C7	0.081 (2)	0.140 (3)	0.133 (3)	-0.025 (2)	0.036 (2)	-0.057 (3)
C8	0.0632 (16)	0.095 (2)	0.161 (4)	-0.0030 (15)	0.030 (2)	-0.030 (2)
C9	0.0486 (13)	0.0778 (16)	0.117 (2)	-0.0026 (12)	0.0137 (13)	-0.0063 (16)
C10	0.0789 (18)	0.094 (2)	0.150 (3)	0.0232 (17)	0.0071 (19)	0.0232 (19)
011	0.0850 (12)	0.0894 (12)	0.0746 (13)	0.0041 (10)	-0.0114 (9)	0.0032 (9)
C12	0.0476 (11)	0.0683 (13)	0.0721 (16)	-0.0059 (10)	0.0035 (10)	-0.0023 (11)
C13	0.0451 (11)	0.0729 (14)	0.0839 (18)	0.0025 (11)	0.0032 (11)	-0.0028 (12)
C14	0.0506 (13)	0.0789 (16)	0.102 (2)	0.0035 (12)	0.0047 (12)	0.0072 (15)
C15	0.0686 (16)	0.0779 (17)	0.126 (3)	0.0118 (14)	0.0164 (17)	-0.0007 (17)
C16	0.0861 (18)	0.0858 (19)	0.105 (2)	0.0037 (15)	0.0221 (17)	-0.0233 (16)
C17	0.0698 (15)	0.0801 (16)	0.0749 (18)	-0.0078 (13)	0.0117 (12)	-0.0047 (13)
O18	0.1154 (16)	0.1075 (15)	0.0771 (14)	0.0001 (12)	0.0056 (11)	-0.0128 (11)
C19	0.0693 (16)	0.103 (2)	0.126 (3)	0.0179 (16)	-0.0041 (16)	0.0227 (18)

Geometric parameters (Å, °)

C1—O11	1.263 (3)	C10—H10A	0.9600
C1—C12	1.506 (3)	C10—H10B	0.9600
C1—C2	1.513 (3)	C10—H10C	0.9600
C2—C3	1.339 (3)	C12—C13	1.417 (3)
С2—Н2	0.9300	C12—C17	1.454 (4)
C3—C4	1.494 (3)	C13—C14	1.411 (3)
С3—Н3	0.9300	С13—Н13	0.9300
C4—C5	1.423 (4)	C14—C15	1.438 (4)
C4—C9	1.450 (4)	C14—C19	1.523 (4)
C5—C6	1.423 (4)	C15—C16	1.379 (4)
С5—Н5	0.9300	C15—H15	0.9300
C6—C7	1.409 (5)	C16—C17	1.425 (4)
С6—Н6	0.9300	С16—Н16	0.9300
С7—С8	1.387 (5)	C17—O18	1.378 (3)
С7—Н7	0.9300	O18—H18	0.8200
C8—C9	1.425 (4)	C19—H19A	0.9600
C8—H8	0.9300	С19—Н19В	0.9600
C9—C10	1.541 (4)	С19—Н19С	0.9600
O11—C1—C12	119.4 (2)	H10A—C10—H10B	109.5
O11—C1—C2	119.5 (2)	С9—С10—Н10С	109.5
C12—C1—C2	121.1 (2)	H10A—C10—H10C	109.5
C3—C2—C1	121.8 (2)	H10B—C10—H10C	109.5

С3—С2—Н2	119.1		C13—C12—C17		118.0 (2)
C1—C2—H2	119.1		C13—C12—C1		122.1 (2)
C2—C3—C4	128.4 (2)		C17—C12—C1		119.9 (2)
С2—С3—Н3	115.8		C14—C13—C12		122.4 (2)
С4—С3—Н3	115.8		C14—C13—H13		118.8
C5—C4—C9	118.5 (2)		С12—С13—Н13		118.8
C5—C4—C3	120.9 (2)		C13—C14—C15		117.5 (3)
C9—C4—C3	120.6 (2)		C13—C14—C19		120.5 (3)
C4—C5—C6	121.4 (3)		C15-C14-C19		122.0 (2)
С4—С5—Н5	119.3		C16-C15-C14		122.4 (3)
С6—С5—Н5	119.3		C16—C15—H15		118.8
C7—C6—C5	119.6 (3)		C14—C15—H15		118.8
С7—С6—Н6	120.2		C15-C16-C17		119.7 (3)
С5—С6—Н6	120.2		C15-C16-H16		120.1
C8—C7—C6	119.7 (3)		C17-C16-H16		120.1
С8—С7—Н7	120.1		O18—C17—C16		117.6 (3)
С6—С7—Н7	120.1		O18—C17—C12		122.5 (2)
С7—С8—С9	122.7 (3)		C16—C17—C12		119.9 (3)
С7—С8—Н8	118.6		C17-018-H18		109.5
С9—С8—Н8	118.6		C14—C19—H19A		109.5
C8—C9—C4	118.1 (3)		C14-C19-H19B		109.5
C8—C9—C10	120.2 (3)		H19A—C19—H19B		109.5
C4—C9—C10	121.7 (2)		C14-C19-H19C		109.5
C9—C10—H10A	109.5		H19A—C19—H19C		109.5
С9—С10—Н10В	109.5		H19B—C19—H19C		109.5
O11—C1—C2—C3	7.3 (3)		C2-C1-C12-C13		-2.3 (3)
C12—C1—C2—C3	-171.5 (2)		O11—C1—C12—C17		-1.5 (3)
C1—C2—C3—C4	178.5 (2)		C2-C1-C12-C17		177.34 (19)
C2—C3—C4—C5	-10.4 (3)		C17—C12—C13—C14		0.9 (3)
C2—C3—C4—C9	170.3 (2)		C1-C12-C13-C14		-179.4 (2)
C9—C4—C5—C6	-0.8 (4)		C12—C13—C14—C15		-0.6 (3)
C3—C4—C5—C6	179.9 (2)		C12—C13—C14—C19		178.3 (2)
C4—C5—C6—C7	0.5 (4)		C13—C14—C15—C16		-0.3 (4)
C5—C6—C7—C8	0.1 (4)		C19—C14—C15—C16		-179.2 (2)
C6—C7—C8—C9	-0.4 (5)		C14—C15—C16—C17		0.9 (4)
C7—C8—C9—C4	0.2 (4)		C15—C16—C17—O18		179.5 (2)
C7—C8—C9—C10	-179.0 (3)		C15—C16—C17—C12		-0.6 (4)
C5—C4—C9—C8	0.4 (3)		C13—C12—C17—O18		179.6 (2)
C3—C4—C9—C8	179.8 (2)		C1—C12—C17—O18		-0.1 (3)
C5—C4—C9—C10	179.6 (2)		C13—C12—C17—C16		-0.3 (3)
C3—C4—C9—C10	-1.0 (3)		C1—C12—C17—C16		-180.0 (2)
O11—C1—C12—C13	178.86 (19)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O18—H18…O11		0.82	1.89	2.608 (3)	146

